
AD-R145 424 PARALLEL SEARCHING AND MERGING ON ZMOB(U) MARYLAND UNIV i/i
COLLEGE PARK CENTER FOR AUTOMATION RESEARCH S KRSIF
JUN 84 CAR-TR-64 RFOSR-TR-84-8746 F49620-83-C-0882

UNCLASSIFIED F/G 9/2 NL

mmmmmmmmm
inlflflflflflflEllElllllllEI

1 7

.!.

I1 11111-.

&6
ma

11.25

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A 6-

- --

A 2

AFOSR-TRl- 8 4-0746 1

CAR-TR-64 F49620-83-C-0082
CSC-TR-1405 June 1984

PARALLEL SEARCHING AND MERGING ON ZMOB

4. Simon Kaif

N1 Center for Automation Research
4 University of Maryland

College Park, NiD 20742

Lfl4.

I 1 I •

CENTER FOR AUTOMATION RESEARCHC".

- LI..' ~ApproveafoXr publAi :~~~
LL Ld

* ~ UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742 , E

SSEP 1319 4 IV

A

84 08 29 039

- . -A AR F-

CAR-TR-64 F4920-83-C-0082
CSC-TR-1405 June 1984

PARALLEL SEARCHING AND MERGING ON ZMOB

Simon Kasif
Center for Automation Research --

University of Maryland
College Park, MD 20742

• ,. 391.

ABSTRACT

One of the most difficult issues that must be addressed when studying a class of
parallel algorithms is the problem of choosing a model that captures the inherent
difficulty of implementing these algorithms on a multiprocessor architecture. Shared
memory models have proven to be an effective tool for deriving lower bounds on the
complexity of comparison problems. In particular, a speed-up of lg(P) is possible for the
problem of finding an elemert, in an N-element sorted list, and speed-ups of P/IglgP and
P are possible for merging N-element sorted lists on P processors for the cases of N-P
and P < N respectively.

In practice, these speed-ups are not attainable since the shared memory models ig-
nore many practical considerations in multiprocessor systems, such as interprocessor
communications, distribution of data on local memories and limited fan-out of memory
locations. In this paper we introduce a model for parallel computation that is strictly
weaker than the shared memory models. The model is based on an actual machine
currently being constructed (ZMOB). We examine the communication facilities available
in the model and show that lower bounds for merging and searching on shared memory
models are atainable (within a constant). The main results reported in the paper are:

-an O(lgN/lgP) algorithm for searching n N-element sorted list distributed
on P processors.

-an O(N/P) algorithm for merging two N-ele nt li3ts on 2P processors.
-an O(Ign) algorithm for merging two N-element lists cn 2N processors.
-criteria and techniques for simulating CREW PRAM algorithms on ZMOB.

One of the techniques is used to establish an O(lglgN) lower bound
for merging two N-element lists on 2N processors.

Research sponsored by the Air Force Office of Scientific Research (AFSC), under Contract
F49620-83-C-0082. The United States Government is authorized to reproduce and distribute re-
prints for government purposes notwithstanding any copyright notation hereon.

, -.i ., . -.. - 2•-•

T ECJRIT " CLASSIFICATION OF TocS PG

*~TREPORT DOCUMENTATION PAGE -6 1

Ia. REPORT SECURITY lSI-A~" b. RESTRICTIVE MARKINGS
UN@LASSIFIED_________________________

2.SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/I AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION IDOWNGRADING SCHEDULE unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
CAR..TR-64 F r'~
C90~-TR-14O5 AF~,T .- 1 0
60, NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

iversity of Maryland (if applicable)

_______________________ __________Air Force Office of Scientific Research
6c. ADDRESS (City. State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Center for Automation Research Directorate of Mathematical & Information
College Park 10 20742 Sciences, AFOSR, Bolling AFB DC 20332

Ba. NAME OF FUNDING ISPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER5 ORGANIZATION OIf applicable)
AFOSR NM r49620- .83--C--0082

6c. ADDRESS (City, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
BolV FBDC 2032PROGRAM PROJECT ITASK IWORK UNIT

Bling AF C232ELEMENT NO. NO. NO. IACCESSION NO.

161102F 2304 A2

S11. TITLE (Includ~e Security Classification)
PARALLEL SEARCHING U-D MERGING ON ZMOB.

112. PERSONAL. AUTHOR(S)
K Simon Kasif

13a. TYPE OF REPORT 1bTIECOVERED 1.DTE OF REPORT (Year Month, Day) S. PAGE COUN

Technical FROM TO___10___ June 1984 38

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 1S. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Parallel processing; ZMOB; searching; merging.

19. ABSTRACT (Continue on reverse If necessary and identify by block number)
One of the most dif-ficult iosues that must be addressed when studying a claos of parallel
algorithmns is the problem o" choosing a model that captures the inihereint diffculty of
lirplementing these algorithms on a multiprocessor architecture. Shared memory models have
proveni to be an effective tool for deriving lower bounds on the complexity of comparison

probems Inparicuara seedup f lg(P) is possible for the problem of finding anl

element in an N-ela.ie-t sorted list, and speed-ups o7 P/lqlqp aind P are possible for merging
14-.-lement sorted litsts on P processors for the cases ri+P a&id P N respectively.

SIni practice, these speed-ups are not attainable since the sharod -nemory models ignore many
practical considerations in multiprocezssor systems, such as interprocessor communications,
d~stribution of data oa lozal memories arid limited fai-*out of mumory locatioas. I.i this paper

-. we iintroduce a model for parallel computation that is strictly weaker than the shared memory
modelz. The model is based on an- actual mac-hine c.urrently being constructed (CO14nI)UED)

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATIONI
R2UNCLASSIFIEDAUNLIMITED E3 SAME AS RPT. 0 OTIC USERS iJ CLASS FTE

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEDHONE (Includle Area Code) 122c. OFFICE SYMBOL
Dr. Robev't 1-. Buichal (?0?) 767- 4939 -- I
DD FORM 1473. e4 MAR 63 APR edition may be used until exhausted. SECURITY CLASSIFICATION Of THIS PAGE

All other editions are obsolete.
UNCLASSIFIED

84 08 29 039

i'L:;ASSIFIED
.- CURITV CLASSIICATION OF Ti41$ PAGE

. ITEM'#19; STRACT, CONTINUED: (ZMOB). We examine the communication facilities available-

in the model and she', that lower bounds for merging and searching on shared memory models
are attainable (within a constant). The main results reported in the paper are:

- an 0 (1IN/lgP) algorithm for searching an N--element
sorted list distributed on P processors;

- an O(N/P) algorithm for merging two N-element lists
on 2P processors;

- an O(lgn) algorithm for merging two N-element lists a

on 2N processors;

- criteria and techniques for simulating CREW and PRAM
algorithms on ZMOB. One of the techniques is used to establish an O(ignlgll) lower bound for

merging two N--element lists on 2N processors.

UNCLASSTFTED

SECUITY CLASSIFPICATION OF ThIS PAGE

77- "-'

1. Introduction

During the last decade a significant amount of pro-

gress has been made towards the understanding of the value

of parallelism for specific computational problems. Sort-

ing, searching and merging are three of the most fundamen-

tal tasks in computer science. Their significance is due

to the key role they play in many domains of application.

With the emergence of VLSI technology it is inevitable for

us to wonder how fast these tasks may be performed on a

parallel (multiprocessor) machine. However, in contrast to

Von-Neumann machines whose execution is well understood,

and for which we have a well established theory of the

time complexity of comparison problems, this is not the

case for parallel machines. The problem is due to the

difficulty in correctly modeling the execution of a phvsi-

callv realizable parallel computer. Thus, one of the most

difficult issues that must be addressed when studying a

class of parallel algorithms is the problem of chosinq a

model that captures the inherent difficulty of implement-

ing these algorithms on a multiprocessor architecture.

Many models have been proposed to solve this problem.

Roughly speaking, parallel models of computation belong

to two categories: shared memory models and fixed inter-

connection models. A typical shared memory model allows

many orocessors to read the same location simultaneously,

2

but disallows concurrent writes to the same location.

Since the model allows concurrent reads and insists on

exclusive writes it is known in the literature as the CREW

PRAM. Examples of fixed interconnection networks are the

shuffle exchange network, mesh-connected array and n-

Aimensional hypercube.

Shared memory models are currently not realizable in

practice. However, they serve as powerful analysis tools

to derive lower bounds for parallel computers. That is, if

we can show that the worst case time complexity of an

algorithm is O(N) for the CREW PRAM, we have also esta-

blished that no fixed interconnection network based oaral-

lel machine can perform faster (see l1] for a spectrum of

models and their relationships). Establishing lower

bounds for searching, merging and sortinq was indeed the

motivation for the powerful comparison model introduced by

Valiant. In [8] several optimal algorithms for comoarison

problems are presented. The algorithm for merqing was

later shown to be implementable on the CREW PRAM [11,[3].

This oaper is a further step in this direction. We

introduce a model for narallel computation, called %MOB.

The ZMOB model is shown to be strictly weaker than the

CREW PRAM. Despite this fact we demonstrate that within

the constraints of this model we are still able to achieve

(up to a constant) the lower bounds for searching and

3

merging that are attainable on a more powerful model of

computation. Additionally, we define two fundamental cri-

teria, that if obeyed allow us to simulate any CREW PRAM

algorithm on the model investigated in this Pper.

The outline of the paper is as follows:

In Section 2 we describe the parallel model of compu-

tation used in this paper, and establish its relationship

to the CREW PRAM.

i

In Section 3 we investigate the problem of searching

an N-element sorted list. We define the criteria for

6ptimality of distribution of elements to processors,

and give an allocation function of elements to processors

that allows us to search the list in O(N/P) time. This

algorithm is shown to be optimal. Since no communication

is needed after the element searched for is broadcast to

all the processors the result in Section 3 is not res-

tricted to ZMOB.

In Section 4 we present three algorithms for merging

two N-element strings on a P-processor Mo1e. Two of the

algorithms are shown to be optimal up to a constant.

IN

- -.-.-- - - .- . - . -
" . -

.. 7 ..-.- . . - -

4

Finally, in Section 5 we conclude with some thoughts

on extensions of the research reported in this paper, and

with a discussion of the cost effectiveness of the model

described in Section 2.

2. A Model for Parallel Computation

The model described in this section is based on ZMOB,

a parallel multi-microprocessor system under development

at the University of Maryland r4]). ZMOB is to consist of

256 ZROA microprocessors connected to a host computer

(VAX-lI/780). Communication between machines is via a high

speed, 48 bit wide, 257 stage shift register called the

"conveyor belt". Each orocessor is connected to the con-

veyor belt via a collection of high speed 8-bit I/O

registers, called its "mail stop". The registers are in

charge of interrupt control, buffering and address control

functions. The system is described in detail in (4,61.

We shall briefly describe here only the communication

features necessary to understand the material in the sec-

tions that follow.

2.1. ZMOB communication facilities

As mentioned above the processors communicate by

sending messages to each other on the " conveyor belt ".

Each processor sends information using its own uniquely

determined location on the belt, called its bin. Each

I.'

orocessor may read information from any bin, including its

own, depending on the control bits set in the message con-

tained in the bin. That is, each processor can theoreti-

cally consume any bin that is currently at its mail stop,

but it can send information out only in its own bin. The

control bits in the message allow the implementation of

several communication strategies, as explained below. The

message contained in each bin may be described by a 4-

tuple: (C X S D), where C, X, S, D correspond to control,

message content, source address, and destination address,

respectively. Different control bits specify the follow-

ing communication formats:

COMM-1.

Direct addressing - The messaqe X is sent to a pro-

cessor whose ohysical address is D.

COMM-2.

Pattern matching - Message X is sent to the first

processor whose oattern (determined by Capability

Code and Mask Registers in the Mail Stop) matches D.

COMM-3.

Send to all processors Message X is sent to all

processors. -1

COMM-4.
Send to a set of processors - Message X is sent to 1
all processors whose patterns match D. Additionally,

6

different settings of Control Registers in the Ma1 -

Stop allow the following:

COMM-5.

Exclusive source - This mode provides exclusive

conversation between two orocessors and disables

interrupts from other processors.

COMM-6.

Readback - This mode allows an individual processor

to intercept any of its own messages that has qone

around the conveyor belt and was not consumed by any

destination processor.

Though in principle ZMOB is an asynchronous machine,

for the purpose of this paper we shall assume synchronous

operation. That is, we assume that a unit time is a com-

plete revolution of the belt, starting from the point when

every bin resides at the mail stop of the processor that

owns that bin. The unit time ends when each processor has

had a chance to read the message that was sent to it. As

we shall see shortly, at each communication step only one

message may be sent to any processor. Moreover, at each

communication step each processor may send out only one

messaqe.

7

2.2. ZMOB as a model for parallel computation

Formalizing the above concepts, at each execution

step ZMOB may be modeled as a directed graph. The nodes in

the graph correspond to the Processors connected on the

belt, and the arcs correspond to the communication links

among the processors. Each processor is assumed to have

internal memory. The hardware configuration allows for a

processor to communicate with all the processors connected

to it in one revolution of the belt. The belt is assumed

to be so fast relative to the processors that each proces-

sor can communicate with the processors connected to it in

unit time. The interconnection topology at each step is

determined as follows:

1. If PEi sends a message by physical address then

depending whether it was sent by COMM-l or COMM-3 it

is assumed to be connected to one or all processors

in the graph.

2. If PEi sends a message by pattern c to a set of Pro-

cessors then it is assumed to be connected to all the

processors that have c as their receiving pattern.

3. Each processor may have multiple outgoing arcs. How-

ever, it may output only one message at a time.

4. Each processor may have multiple incoming arcs. How-

ever, it may receive only one message at a time. To

-.

8

prevent confusion all the algorithms presented in the

paper assume that a processor may have at most one

incoming arc.

5. A processor may not have incoming and outgoing arcs

at the same time. That is, at each revolution of the

belt the processor is either receiving or sending

information, but not both.

To simplify matters we shall assume that each execu-

tion step of ZMOB consists of two phases: a communication

step and an execution step. The communication step is

further subdivided into a sending step, when all the pro-

cessors load their respective bins, and a receiving step,

when all the processors consume the messages sent to them

during the sending step. The execution step is assumed to

be one computational step of the processor, e.g., com-

parison and addition of two integers. The computational

step is assumed to be at least as long as the communica-

tion step.

Conditions 1-3 make the model more powerful than a

simple communication ring. Conditions 4-5 distinguish the

model from shared memory models such as the CREW-PRAM. To

see that ZMOS is indeed weaker than a model that allows P

processors to read simultaneouslv from any location, one

needs to envision a CREW PRAM alqorithm that in one atomic

step performs P reads from P locations, stored in a N-

9

location shared memory. To simulate the above situation

on ZMOB, we need to distribute the N locations on P pro-

cessors, by storing N/P locations in the internal memory

of each processor. Now, in the worst case, all the simul-

taneouslv read locations may reside in the same PE. Conse-

quently, if P processors are to read from some processor

PE. we have P outgoing arcs from PEi. However, by condi-

tion 4, PEi can output only one element at a time. Thus, a

P-orocessor ZMOB can simulate an arbitrary P-processor

CREW PRAM in O(P) time, and the bound is tight.

In the following sections we shall show several

nontrivial adaptations of CREW PRAM algorithms for ZMOS,

sacrificing only a constant factor.

3. Searching

In this section we consider the problem of searchinq

for an element in an N-element sorted list , distributed

on P processors. The first thought that comes to mind is:

distribute the N elements evenly among the P processors

and perform a sequential binary search on each processor.

However, this intuitively acpealing approach results i

negligible speed-up since each orocessor per orms

N.Ig =lgN-lgP comparisons.

/

10

3.1. Algorithm SEARCH

We first present an algorithm for searching that may

be implemented on a shared memory computer capable of per-

forming concurrent reads.

Let x(xl,...,XN) be a sorted list of N elements. For

simplicity assume Nmsn+l-l, where s=P+!. Algorithm

SEARCH works as follows:

0. Let k=n

1. Mark the elements of x subscripted by is Ili

2. Assign PEi to element is k and compare it to the ele-

ment being searched for. At the end of this step PE.

records the result of the comparison in location

loc..

3. Now each PEi compares loci , and loci_, , for l<i

If for some j loc iflocj_ 1 P then the searched ele-

ment is in the j-th interval.

4 Let k=k-l and reindex the elements of the j-th inter-

val by 1, 1<1<s

5. Repeat steps 1-5 for the elements in the j-th inter-

val.

Since P comvarisons are performed simultaneously in

steps 2-3 we reduce the problem of searching sk elements

to a problem of searching s(k-) elements. Thus, in Cn

steps we can search the entire list (for some constant C).

Consequently the time complexity of the algorithm SEARCH

is of order

ig(N+l)nlIq(P+l)
Referring to [21 we note that the algorithm is optimal.

Note that step 3 in SEARCH may be performed on the

ZMOB model introduced in Section 2 in one communication

step, where PE. sends loc i to PE i+ . Unfortunately, step

2 in the algorithm does not readily applv on the ZMOB

model if we distribute the elements of x by assiqning the
first H elements to the first PE, the following H elements

to the second, and so on. To see this, one needs to

observe that after the first comparison all the elements

that need to be compared in the next step reside in the

same PE. Since the model allows us to output only one

location at a time we have to multiplv the complexity of

Nthe algorithm by P, yielding Plg - . Obviously, one can

allocate all N elements of the list x to every Pr; but

this is hardly an optimal solution.

The analysis presented above suggested the question

of whether there is an allocation of elements to proces-

sors that has the followinq desirable property:

Definition: Given a parallel algorithm A, an allocation

of elements to the processors is said to be a good alloca-

12

tion for A if at any time during the execution of A when-

ever PEi performs an operation on some element, that ele-

ment already resides in the memory of PE.

Lemma 3.1:

Let x=(xl,x 2,...,xN) be a -sorted strinq. We shall

assume N=sn+l1-, where s=P+l. Let sj be the representa-

tion of j, 1j<N using the base s, i.e.,,

nn-i 1j=a. sn+a. s +,...,+al s +a
n Jn-l

Then, in algorithm SEARCH if PE. performs a comparison on

the element xj at step k then

j=aj sn+aj Sn-l+,..,+a n Sn-k+l

n n-l ~ n-k+l

and a. = .
In-k+l

Proof:

We shall prove the lemma using induction on the

.,-uber of steps k.

For k-il the elements being compared are indexed by is

compared by PEi, then sj=is n , and a. =i.
in

For i<k , assume PEi compares x.. Bv the induction

hypothesis the elements compared at step k-l were indexed

by inteqers of the form

13

j-ajnsn+aj ...-+r
n ,+s n (Il)+

for 1<r<s-l. Assuminq that the next searched interval is

given bv

a. sn+a. s +,... -,+(r 2a s +a s +,...,+r s
in n-l 0n 1n-i 0

we find that at step k PE i comoares the element sub-

scripted by

aj nsn+a j sn-l+,...,+(r-1)sn-k+ 2+isn -k+l
n n-I.

Q.E.D.

As an immediate corollary of the lemma we have

Theorem 3.2:

Let x,s,N be as above. Let ci be the coefficient of

the term with the smallest exponent in si , i.e., the

representation of j in the base s. Let f(j) be the allo-

cation function of elements of x to orocessors PEi , l<i<P

defined by

f(j)=cj

Then f(j) is a good allocation function for algo-

rithm SEARCH.

Proof:

The proof follows immediately from Lemma 3.1 bv

observing that whenever PEi compares element I it must be

14

the case that

cj~i

Q.E.D.

4. Merging on ZMOB

In this section we address the problem of merging two

sorted strings of N numbers using P processors in a mul- -'

tiprocessor like ZMOB. We present three different algo-

rithms for merging with the following characteristics:

1. All have a sublinear lower bound.

2. All are based on enumeration - that is, at the end of

the merging every element knows its absolute location .

in the string of length 2N obtained bv merging the

two input strings of length N.

The algorithm for merging presented in Section 4.1

has a lower bound of lg N. It fully utilizes the pattern

matching capabilities of ZMOB. The algorithm presented in

Section 4.2 for merginq two N-elements lists on 2N proces-

sors is a nontrivial adaptation of ruskal's merging algo-

rithm (31 for CREW-PRAM to ZMOR. This algorithm is

optimal (up to a constant).

The two algorithms in Sections 4.1 - 4.2 do not gen-

eralize to the case of merging N-element lists on P

15

crocessors for P<N . Therefore, in Section 4.3 we present

an optimal algorithm for merging two lists of length N

each on 2P processors for the case P<N . The time com-

plexity of this algorithm is of order . The optimality

of the algorithm in Section 4.3 is based on the observa-

tion that every parallel alqorithm of time complexity T

may be converted to a sequential algorithm of complexity

PT and hence every parallel merging alqorithm of order

Od() is optimal.

4.1. Merging Using Selective Broadcasting

In this section we present an algorithm for merging

two N-element sorted strings of integers on a 2N-processor

ZMOB. We present a fairly detailed algorithm in order to

provide the user with intuition as to how a machine like

ZMOB may be programmed.

Let x=(xl,....,xN) and M=Yl,...,yN) be two sorted

lists of integers. The first string is stored in proces-

sors PI,...,PN, subsequently referred to as the x-

processors, and the second string is stored in processors

P referred to as the y-processors. The ele-

ments are stored in ascendinq order, one element aer pro-

cessor. To simplify the discussion we shall assume

without loss of generality that N=2n-l , and that the end

elements of the string y, y1 and vN, are -infinity and

+infinitv respectivelv. Each processor has the followinq

16

variables.

1. Nfil the integer stored in PEi

2. Index Iij the position of Nfil in the string x or v

depending whether PE.i is an x-processor or a y-

11

processor.

3. PATTERN[ij = the pattern to be used by PE durinq the

selective broadcast operation.

4. RES[i] = the result of the comparison performed by

PE

5. ENUM[i] - the final position of Nfil in an ordered

enumeration of the strings x and y.

6. TEMPi] = the location of element xi in the string

y. By location we mean the index j such that

V-1xi<Yj+l.

For simplicity alqorithm MERGE_4.1 is subdivided

into two phases. During the first phase we call the pro-

cedure FINDPARTORDER, with the strings x and v, that

for each element xi finds its position in the list v. The

positions are stored in TEMP~i]. In the second phase the

procedure FIND TOTAL ORDER is called to find the absolute

location of each element in the resulting string.

Procedure FIND PART ORDER is called with parameters

(I ,u) and (1 ,u) which correspond to the lower and
y u b

upper bounds of the two sorted strings x and y to be -

17

merged. For simplicitv we assume that the elements in the

strings are distinct. Initially we call FIND PART ORDER

with the parameters 1,N,N+l and 2N. Procedure

FIND PART ORDER is given below.

Procedure FINDPARTORDER(IxUx lyUy

begin

2 x

0. For all i such that 1<j<uy set

PATTERN[j] = i

1. Broadcast N[i] to all processors PE. such that
J

I -y<. y ..

2. For all j such that IV<_j<uy let PE. compare NEH] to

Nfi] and store the result of the comparison in RES[JI.

3. By comparing RES~j] with RES[j+l1, for all J, such

that I <j<uv find the location of Nfil in the string y

and broadcast it to PE .

4. Let TEMP[i] - the location of Nfil in v.

Observe that 1 - < TEMP[i]_<uv.

if 1 <i then

be x

18

5. 'Far all j, such that l~<j.uy set

li-l)/+ if Nj<EPi
PATTERN(U 1 (u)/2+1 if Nfj1>TEMPriI

6. Let

llx=l

ul =i-1

12x=i+1

u2,~=u ,x

7. Let

i ii=1
y

ul =TEMP(i]
y

1 2,=TEMP i +l1

cobegin step 8 and step 9.

8. if 11 y>U1l then

For all i, llxl<i<ulx, set TEMPfi] to ulv,.

If 11 mul then
y '7

a begin

FIND PARTORDER(11 , ul ,l ,1xul)

For all 1, 11,<i<u1,l such that i<TEMP~ll set

p TEMP~ij 11 -l1 _

For all 1, 11 <i<ul~ such that i>TEMP~ll Iset

TEMP(il 11

1.9

end

Otherwise, (11 <ul)call

FINDPARTORDER(Li ,ul Ill ulx x y y

9. If 12 Y>u2 Ythen

For all i, 12 <i<u2 ,set TEMP~iI to u2x- x y

If l2v=u2 Y then

begin

FINDPARTORDER(12 Y u2 ' llx ,ul

For all 1, 12 Xci<u2x, such that i<TEMP[12 Iset
Y

TEMP[1i 12 -1

For all i, 12 <i<u2x, such that i>TEMP(1l2 I set

TEMP[i] 12

end

Otherwise, 1(1 <u2) call

FINDPARTORDER(1.2 , u2x,ll ,12?.

coend steps 8-9.

end

end

Explanation:

Intuitively, procedure FIND PARTORDER works as fol-

lows:

20

At steps 0-1 the middle element of x, xi, is broad-

cast to all the y-processors. This defines two segments of

x, X, and X2 . In step 6 we determine the lower and the

upper bounds of each X-segment. Since we conveniently

have chosen N to be 2 n-_, the length of each x-segment is

N+l
21.

At step 3 we find the location of the element in v.

This defines two segments of y, YI and Y.2 In step 7 we

determine the lower and the upper bounds of each y-

segment.

Clearly we can now separately merqe X1 with Y, and

X2 with Y This is accomplished with the recursive

calls in steps 6-8, and the set up of the y-processors in

step 3. In step 3 all the Y1 processors set their patterns

to the index of the middle element of X1. Similarly the

X 2 processors set their pattern to the middle element of

X2-

There are several cases that need to be taken care of

separately. The first two cases arise when TEMPfi] < l

i.e. the middle element of x is smaller than all the ele-

ments in v, or when TEMPi] = u sub v, i.e., the middle

element of x is larger than all the elements in y. In the

former case we merqe all the elements of X1 to the left of

Iv , and the latter case we merge all the elements of X2 to

the right of u

21

The last exceptional case that needs to be taken

care of is the case when either Y1 or Y. is of length 1.

Without loss of generality assume that Y1 = 1 the ele-

ment in Y is y and the integer in Y1 is N[I] . Clearly,

in this case the elements of X will be merged either to

the left or to the right of the element in Y. "Thus, the

position of each element in the segment X1 may be deter-

mined by inserting the singleton element of y in X,, which

may be done by calling FIND PARTORDER with Y1 and X1 in

this order. Once the location of the y element in X has

been determined we can set the location of all the ele-

ments in X1 greater than Nil to be Nil], and the loca-

tions of all the elements in X1 smaller then Nil] to be

N~i]-l

Procedure FINDPARTORDER terminates when the size

of all x-segments is zero.

Proposition 4.1:

Algorithm FIND PART ORDER correctly finds the rela-

tive location of the x-elements in the string y in O(lqN)

time.

Proof:

It is easy to see that each invocation of

FINDPARTORDER with segments X , Y either finds the

location of X in Y in case X is a sinqleton list, or

* . . . ~ -* > *.

22

creates two recursive calls: FINDPARTORDER with (X1 ,

Y) and FINDPARTORDER with (X2 ' Y 2) " The lengths

of X, and X2 are smaller than 4. Thus, algorithm

FIND PART ORDER is guaranteed to terminate. It is also

easy to verify that algorithm FINDPARTORDER spans a

binary tree of recursive calls to FINDPARTORDER. kt

level k of the binary tree 2k elements of X are merged

into Y simultaneously. At the root level the middle ele-

ment of X is compared to all the elements of Y, at the

second level two elements of X are compared to the "right"

elements of Y, and so on. Consequently, it suffices to

orove by induction that at each level the chosen elements

of X are merged into the string Y in the correct loca-

tions. The proof using induction is similar to the proof

for Lemma 3.1 and is left as an exercise to the reader.

We must ensure that on each level, each processor is

required to compare its local element to only one element

of the other string. However, a processor may be asked to

compare more than one element at a time only if two calls

to FINDPARTORDER are created with the same strings, and

this may happen only if the procedure FIND PARTORDER is

called with a Y or X strinq of length one. This case is

taken care of by the soecial check in steps 7-8.

Thus, algorithm FINDPARTORDER correctly finds the

Partial order of the elements of X in Y in O(lg(N)) time.

23

At this point each x-processor knows its relative

location in the y-string. Obviously, we can reverse the

parameters in the call to FIND PARTORDER and determine

the relative location of each y-element in x. Now, it

remains to show that we can find the absolute location of

each element; this is done by procedure FINDTOTALORDER

given below.

The input to FINDTOTALORDER is two sorted strings x

and y, such that x =1 yl=N. We assume each element in x

knows its relative location in v. We recall that by the

relative location of xi in y we mean the j, Ij<N such

that yj.xi<Y+ . We also recall that each relative loca-

tion is stored in TEMP[i].

The output of FIND TOTALORDER is: each x-processor

knows its absolute location in the string resulting from

merqinq x and y.

Alqorithm FIND TOTAL ORDER (x,v)

begin

1. For each J, I<JN-i check if TEMPfjl < TEMP[j + 1].

Mark all those PEs whose TEMP[j] is greater than

TEMP[J-lI. We shall refer to such a processor as a

locally minimal PE.

2. For each J, 2<j<N check if TEMP[j] > TEMPj - 11.

Mark all those PEs whose TEMPj] is smaller than TEMPtj

+ 1]. We shall refer to such a orocessor as a locally

7

24

maximal PE.

3. Now let each locally maximal x-processor PEj send its

index INDEX[j] by pattern to the v-processor indexed by

TEMP(j] + 1.

At the end of this step each y-processor that received a

message from an x-processor can compute its absolute

position by adding the message content to its own index.

Note that each y-processor may receive at most one mes-

sage.

4. Now, for all j Ij<N, such that PE. is not a locally

minimal PE, have PE. do:

PATTERNrj] = TEMP~j]

5. Now, for all j I<j<N, such that PE. is the locally

minimal PE, have PEj do:

Send INDEXrjI by pattern TEMP(j]

At the end of this step each PEj may compute its rela-

tive position among all those PEs with the same relative

location in y. This may be done by subtractinq the

index of the locally minimal PE from the index of the

processor.
6. Now, for all j lj<N have PE. do:

PATTERNfj] - TEMP[j]

7. Let all the y-orocessors PEk that know their absolute

location broadcast it by the pattern INDEXrk] - 1.

8. Now each x-orocessor may compute its absolute loca-

tion by adding the absolute location of y-orocessor

25

received at step 7 and the relative position computed at

step 5.

end

Notes:

1. All the steps in FIND TOTAL ORDER are atomic steps.

Thus, the time complexity of FINDTOTALORDER is con-

stant.

2. By reversinq parameters in the call to

FINDTOTAL ORDER we may find the absolute locations

of the elements of v in x.

Theorem 4.1:

Let x and V be two sorted strings of lenqth N, dis-

tributed in ascending order on a 2N-processor ZMOB. Then

we can sort the two strings in O(lqN) time.

Proof: The theorem follows from Proposition 4.1 and the

constant time complexity of procedure FINDTOTALORDER.

4.2. Optimal Merging on ZMOB

In Section 3 we found that one way to achieve lower

bound performance on ZMOB is by distributing the informa-

tion in such a way that each time the P processors perform

P reads, we insure that each of the elements accessed by

PEj already resides in the memory of PEj. However, this

26

is not always possible. In this section we use one more

fundamental trick that allows deriving an optimal (up to

a constant) merging algorithm.

Definition:

Given a parallel algorithm A, an allocation of ele-

ments to the processors is said to be a nearlv-good allo-

cation for A if at any time during the execution of A when

two distinct PEis perform an operation on two elements s

and r the following holds:

1. The elements r and s reside in two different oroces- _

sors.

2. If the elements reside in the same PE then s = r.

Lemma 4.2:

Let A be some CREW PRAM algorithm and let f be a

nearly-good allocation function for A. Then the algorithm

A may be simulated on ZMOB in constant time.

Proof:

Each time P processors want to read P locations, they

broadcast the requests for these locations. We shall

assume that each processor knows to what PE the location

it is trying to read has been allocated. Thus, at each

concurrent read step of alqorithm A, P requests for loca-

tions are broadcast on the bus.

Clearly, if there is no contention for processors the

fetches may be performed by having each PE that has the*

required location respond to the sender.

A problem may occur in cases when two or more oro-

cessors are contending for locations in the same proces-

sor. However, if f was a nearly-good allocation function

for A, all the requested elements that reside in the same

PE are equal. Thus, the processor that received the

request for a location may send the location out by using

its own index as a oattern. Irrespective of the number of

requests sent to a processor it will consume and respond

to one request only. If all the processors that

requested the location set their receiving pattern to the

index of the orocessor they requested information from,

the data will be delivered to all those processors in unit -

time. Thus, algorithm A may be simulated on ZMO8 in con-

stant time.

Q.E.D.

The lemma above has an immediate corollary.

Corollary 4.2:

A P-processor P-element memory CREW-PRAM algorithm

may be simulated on ZMOB in constant time.

Corollary 4.2 has an immediate important application

to merging. In r3I we find an algorithm for merging two

28

sorted N-element strings on an N-processor CREW-PRAM in

O(lglg(N)) time. The algorithm is optimal up to a con-

stant (8]. Therefore, by Corollary 4.2 the algorithm may

be simulated on a 2N-processor ZMOB with constant time

overhead. Kruskal's algorithm performs the same functi^n

procedure FINDPARTORDER performs in Section 4.2, that

is, for each element it finds its relative location in the

other string. Recalling that the time complexity of

FIND TOTAL ORDER for N=P is constant we conclude:

Theorem 4.2:

The lower bound for merqing two N-element sorted

strings on a 2N-processor ZMOB is O(lglg(N)).

4.3. Merging two long strings with a small number of pro-

cessors

Let X Y be two sorted strings, and assume Ix =jYt=N.

In this section we show that we can merqe the two strings

on a 2P processor ZMOB in O(N/P) time using algorithm

MERGE 4.3.

The input to MERGE_4.3 is given in the form of two

strings that are initially distrihuted in ascending order

on 2P processors. For simplicity assume N-SP.

The output of MERGE_4.3 is: each processor knows its abso-

lute location in the strinq resulting from the merge.

Algorithm MERGE 4.3 is qiven below.

2q

Algorithm MERGE_4.3

1. Choose the elements indexed by iS in each string

There are no more than P chosen elements in each string.

Moreover, there is only one chosen element in each proces-

sor. In fact the chosen element is the last element in

each PE.

2. Merge the chosen elements of each the strings. This

step may be done in O(lglgP) time as shown in Section 4.2.

Now, note that the chosen elements define P equal-length

intervals in each strinq, denoted by (X1,....,X P) and

(Y,...,Yp .At the end of this step we know to what

interval in the other string each chosen element belongs.

In step 3 we find the exact relative position of each

chosen element of X in Y. Delegate an x-processor to each

chosen element of X. Set the pattern of this processor to

be the index of the interval in Y that the chosen element

belongs to. Formally, let PE1 s set its receivinq pattern

to the index of the v-interval that element xis is in.

3. Broadcast the content of each y-interval on the

belt. Note that each x-processor communicates with only

one y-processor, while a y-processor may be communicating

with more than one x-processor or none at all. At the end

of this step each x-orocessor contains the content of the

y-interval where the chosen element of x, residing in the

x-processor, belongs. Now each x-processor may find its

relative oosition in the string v, by oerforming a

30

sequential binary search on the content of the v-interval

it contains. since the length of each y-interval is

bounded by , and each processor is required to output or

receive only one element at a time, the time complexity of

steps 3 is of order O(N/P) + lg(N/P)

4. Repeat the above step for the chosen elements of Y.

The Positions of the elements chosen in step 1 and the

relative positions found in steps 3-4 define 2P segments

in each string denoted by X i and Y.i respectively, where

l<j<2P. Each segment is defined uniquely by its right

end-point. This subdivision defines 2P disjoint pairs

(Xij,Y) that may be merged separately.

5. Now, we DELEGATE (see below) 2P processors to the 2?

pairs. Once the pair of x-y segments indexed by the same

integer i., 1<ij<2P , reside in the chosen Processor, we

Nmay merge them sequentially in O(y) time. This is true

since each segment in each nair is at most N() lonq.

We must, therefore, show that DELEGATING 2P proces-

sors to the corresponding pairs of x-y segments may be

accomplished in O() time. Without loss of qenerality we --

shall discuss only the x-segments.

We first observe that at the end of step 4 each of

the 2P processors PEj contains an integer e1 , 0<e.<N, that

corresponds to the end of some x-segment. The x-

processors contain the ends of the x-seqments defined in

4_.- ° '- - - _-' " - .. _ , .3 i .2 . . _._i i . _i . _ " "" _ • . .- '

31
II

step 1, while the y-processors contain the ends of the x-

segments created in step 4. Additionally, each of the 2P

processors contains some interval Xi, which is the super-

set of the x-segment defined uniquely by the integer e.

Thus, each PEj must determine the index ii and the lower

bound of the segment defined by ej. This task is performed

in O(N/P) steps by Algorithm 4.4. Once this problem is

solved we may simply DELEGATE the ijth segment to the pro-
cessor in which the end of that segment resides.

Algorithm 4.4

1. Note that the inteqers in the x-processors define a

sorted list. Also note that the integers in the v-

processors define a sorted list. Thus, we may find the

absolute order simply by merging the integers in the x-

processors with the integers in the v-processors. This

may be done in O(lglgP) time. At the end of step 1 each

processor knows the index of the segment it is responsible

for and its upper bound.

2. Let T(jl be the index of PE. in the new enumeration.

In two steps PEj can find the lower bound of the segment

stored in PPj by communicating to PETfjl_. This is done

by letting each PEj set its pattern to T[JI, and then let-

ting each PEj send its Tjjl by pattern to PETrj]+.

32

Thus, the overall time complexity of Algorithm 4.4 is

of order lqlgP.

Similar arguments hold for the v-processors.

Finally, each of the 2P processors contains a sorted

string of length at most 2N/P. The enumeration of all the

2N elements is straightforward and is left as an exercise

to the reader. As a result we have the following theorem.

Theorem 4.3:

Let X, Y be two sorted strings, and asssume

1XI=jYI=N. For N - SP, 1<S we can merge the two strings

distributed in ascending order on a 2P-processor ZMOR in

O(N/P) time using 2P processors.

Note:

Since the lower bound to merge two such strings on a

sequential computer is of order O(N), we conclude that the

algorithm presented above is optimal up to a constant.

5. Summary

In this paper we have investigated the problem of

searching and merging two N-element strings on a parallel

model of computation (ZMOB). The main results reported in

this paper are:

1. Parallel searching for an element on a N-element

string distributed on P processors may be oerformed

1 "

33

on ZMOB in O(N/P) time. The algorithm given is

optimal up to a constant.

2. Two sorted strings of length N may be merqed on a N-

processor ZMOB in O(iglgN) time.

3. Two sorted strings of length N may be merged on an

N-processor ZMOB in O(N/P) time.

The results reported in this paper may be used for

solving a variety of problems. Clearly, the lgN merging

algorithm of Section 4.1 may be used to derive a g2N

sorting algorithm. In a subsequent paper we plan to extend

the results in Section 4 to derive an optimal oarallel

algorithm for AND-ing (OR-inq) two binary. strings

represented by run lenqth codes. In this representation a

binary string is represented by the value of the first

element of the string followed by a string of integers

that represent the successive runs of Os and is by their

respective lengths. For a large class of binary strings

this representation is more compact, and it is widely used

in the domain of signal and image processing. AND-inq and

OR-ing on a sequential computer may be performed in O(K)

time using this representation, where K is the number of

runs. We show that we can AND two strings having K runs

each in O(K/P) time on P processors. Parallel orocessinq

of run length codes has not, to our knowledge, been previ-

ously studied.

p 34

Although the algorithms in this paper were described

for a particular machine organization, they generalize

naturally to any machine that satisfies conditions 1-5 in

Section 2. Note that all the algorithms presented in Sec-

tions 3-6 used relatively few communication links among

processors. In fact at any step of the execution the

interconnection graphs induced by the algorithms had only

P edges at the most. This is true since in all the algo-

rithms either the x-processors communicated to the y-

processors and vice versa or the x-y processors communi-

cated among themselves in a mesh-connected fashion.

In [71 it was argued that broadcasting "cannot signi-

ficantly aid sorting algorithms". In this paper we have

demonstrated that selective broadcasting allows a dynami-

cally reconfigurable interconnection topology, and proves

to be an extremely Powerful construct for mesh-connected

like computers. In particular it allows one to attain

maximal speed-ups for searching and merging.

Finally, we would like to conclude with a pragmatic

remark. The philosophy behind ZMOR is simple. In many

cases it is cost-effective to build a parallel machine

from a collection of slow, cheap processors connected by a

very fast communication medium. In other cases we would

like to experiment with shared memory or dynamically

reconfigurable systems. In either case ZMOS may be an

35

effective simulation tool. As mentioned in the introduc-

tion ZMO8 is currently under construction at the Univer-

sity of Maryland. A 16-processor ZMOB is partially opera-

tional and is undergoing extensive testing and debugging,

and other processors are being connected to the conveyor

belt. The communication facilities described in Section 2

are fully supported on the belt though it is premature to

conjecture whether the theoretical model introduced in

this paper is indeed realizable in practice.

ACKNOWLEDGEMENTS

I thank Dr. Azriel Rosenfeld, Dr. Angela Wu and Mr.

S.K. Rhaskar for numerous discussions and comments that

contributed greatly to the development of the ideas in

this paper and to the presentation of the results.

<I~

36

REFERENCES

(11 A. Borodin and J.E. Hoocroft, "Routing, merging and-

Sorting on Parallel Models of Computation", Proc. ACM

14th Annual Svmnosium on Theory of Cornputing, 1982,

p. 338-344.

(21 D.E. Knuth, The Art of Computer Programming, Sorting

and Searching, Vol. 3, Addison-Wesley, Reading, Mass.

1973, p.422.

(31 C.P. Kruskal, "Searching, Merging and Sorting in

Parallel Computation", IEEE Transactions on Comput-

ers, Vol. C-32, 1983, pp. 942-946.

(41 C. Rieger, J. Bane and R. Trigq, "ZMOB: A Highly

Parallel Multiprocessor", TR-911, Department of Com-

outer Science, University of Marvland, College Park,

May 1980.

(51 C. Rieger, J. Bane and R. Trrigg, "ZMOB: A New Comput-

ing Engine for 41", TR-1028, Department of Computer

Science, University of Maryland, College Park, March

1Q81.

(61 C. Rieger, "ZMOB: Hardware from a User's Viewpoint",

TR-t042, Department of Computer Science, Universit"

of Maryland, College Park, April 1981.

(71 Q.F. Stout, "Broadcasting in mesh-Connected Comput-

ers", Proc. of the 1982 Conf. on Information Sciences

37

and Systems, Princeton University, Princeton, NJT.,

1982, pp. 85-90.

(81 L.G(. Valiant, "Parallelism in Comparison Problems",

SIAM J. of Computing, Vol. 4, 1975, p*348-355.

* 0

4.IFh
'14Om

~ r 'A7",

.4" . rs

